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Abstract /
In this paper, the second of a scries on the application of temporal logic Lo concurrent programs,
we present proof incLthods (or cstablishing snvariance (safety) and eventuality (liveness) propertics.
The prool principle for establishing invariance properties is based on computational induction,
and is a generalization of the inductive assertion mcthod. For a restricted class of concurrent 1

programs we present an algorithin for the automalic derivation of invariant asscrtions.

In order to establish eventuality properties we present several proof principles thal translate
the structure of Lthe program into basic temporal statements about its behavior. These principles
can be viewed as providing the temporal semanties of the program. The basic statements thus
derived are then combined into temporal proofs for the establishment of eventuality propertics.
This method gencralizes the intermittent assertion method.

The proof principles are amply illustrated by examples.
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INTRODUCTION

In a previous report [MI’2] we introduced the temporal framework for reasoning about con-
current programs. We described the model of concurrent programs that we study which is based
on interaction via shared variables and defined the concept of fair exceution of such programs. We
then demonstrated the application of the lemporal logic formalism Lo the expression of properties
of concurrent programs. Program propertics of interest can be classified according Lo the syntactic
form of the temporal formula expressing them; we studied three classes of properlies: invariance
properties, eventuality properties and precedence properties. We have shown that almost all of the
program propertics that were ever considered or studied for cither sequential or concurrent pro-
grams [all inlo one of these three calegories. These include properties such as partial correctness,
clean behavior, global invariants, mutual exclusion, safcty, deadlock absence, output integrity - in
the invariance category; total correctness, intermitient assertion realization, accessibility, liveness,

" responsiveness - in the eventualities category; and safe liveness, absence of unsolicited response,

I'II'O responsiveness and general precedence - in the precedence category.

In this paper, a sequel to [MI’2], we concentrate on the application of the temporal logic
formalism to proving these properties. We would thus present methods for cstablishing that a
given program indeed possesses a certain property. In principle, once a property has been expressed
within the temporal logic formalism, and an appropriate temporal characterization of the behavior
of the given program derived ([MAN1], [MP1], [PNUL]}, [PNU2]), the task of proving that the
properly holds for this program reduces to proving the validity of a certain temporal implication.’
This implication states that every sequence of states, if il is a fair computation of the given
program, has the desired property.

These principles can be justified by the general temporal formalism, and once justified, provide
direct, simple, and intuilive rules for the establishment of these properties. They usually replace
long but repctitively similar chains of primilive steps in more detailed proofs, and help us focus
on the higher level overview of the proof while retaining the necessary standard of rigor.

Previous attempts to develop proof Lechniques for concurrent programs include [KEL), [LAM]
and [OG].

In our exposition, we assume thal Lhe reader is lamiliar with the concepts and definitions
introduced in our first paper of this series - [MP2].

THIE INVARIANCE PRINCIPLE

Consider a Lypical concurrent program P of form
(7 := Jol@); [M]l...]|1Pm]

with input parameters £ = (z,, ..., zx) and shared program variables ¥ = (y1, ..., ¥a) over a
domain D. Let ¥ be a classical formula, i.e., a formula with no modal operators. The basic idea
in proving that the formula 9 is an invariant of the program P, i.e.

= o(z) D 0Oy,

is to show that:
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(a) the precondition p(Z) implies that ¥ is true jnitially.

(b) ¢ is preserved by any possible transition of the program P; that is, if it were true before
the transition then it also will be true after the transition.

We can then infer the invariance of 9 under the precondition o(Z).
To state the result more precisely, let Q(7;7) be a “state property”, i.e., it is expressed by
a classical' formula with no temporal. operators, which may refer to the localion variables 7, the

program variables 7, and possibly some global variables.

Let

@ ca(¥) — [Z = fa(7)] @

be a transition in process P; for some j = 1, ..., m. With each such transition we associate the
location transforination lunction r, given by:

Talfly ooy Mgy ooy ) = (T1y oo, €y o Tm),

i.e., the value of =; is replaced by ¢, while the value of each =y, © 7 j, is unchanged. This
transformation denotes the change in the veclor ¥ when transition a is taken, much in the same
way thatl f., dcnotes the change in ¥ when a is taken.

The notation we use to express the location change as a transformation underlines the simitarity
between the location and program variables. This leads Lo the possible description of a transition
as:

Q [at e A ca(@)] = [(7;9) = (ra(®); fa(D))] O

A property Q(;7) is said to be inductive for P if the following verification condition holds
for each transition a in P:

Va: [atl/\'c;(T/)/\Q(f;T)l > Q(ra(7); fa(9))-

Intuitively, @ is inductive if it is inhecrited along every transition t.e., if it was true belorc the
transition and the transition was enabled, it will necessarily be true after the transition. Note that
the verification condition is classical, in the scnse that it contains no temporal operators, and can
therefore be established using classical proof techniques.

Our proof rule lor invariance may now be formulated as follows:
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The Invariance Principle
Let Q(=;7¥) be a state property of a program P such that:
1. @ is truc initially; d.e.,
I: [at% A o(7)] D Q(F; fo(Z))

holds, where & = (€3, ..., £J') the vector of initial locations.

2. Qis il;ductive for P; t.e., the verification condition
Va: [attAca@ A QT 2 Qra(); fulF))

holds for every transition « in P.

Then we may deduce

E [atly A (Z) D OQ(m;7).

Condition 1 ensures that @ is true initially, provided we restrict ourselves to inputs Z satisflying ¢
and condition 2 ensures that once @ is true it remains so. The conclusion is that @ is invariantly
true for all (P, p)-computations.

Note that this proofl principle reduces the proof of a temporal formula of the invariance class
into a classical proof of a set of forimulas, namely the initial condition 7 and Lhe verification
conditions V.

The principle of invariance described here is the most gencral method known for proving
invariance properties of concurrent programs. It can be shown to underlie all other proposed proof
methods for invariance properties.

PRAGMATIC CONSIDERATIONS IN CHECKING FOR INDUCTIVENESS

In principle, when checking for the inductiveness of an asscertion @ one has to check the
verification condition V,, for all transitions o in the program. However, in practice, we can im-
mediately discard many transitions as automatically preserving @, based on syntactic considera-
tions alone. '

If the property @ docs not contain any of Lhe location variables 7, then the required verification
conditions V are reduced to

Vit [a@AQ@) 2 Qfa(7))

In particular, V/, is trivially true for any transition a where f, does not modify the variables on
which @ actually depends.

A typical casc is Lhat of semaphores. We have the following property:

The Semaphore Variable Rule: For a semaphore variable y,

4
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if its initial value is a nonncgative integer
and if it is modified only by request and release instructions,
then

r Oy > 0)

The only two instructions that may modify the value of a semaphore variable are:

request(y), which is equivalent to

O ﬂ>0—'[y:=y—1]©

and release(y), which is equivalent to

Q true — [y: =y + 1] "O

For the request casc the verificalion condition is
(>0 A(20] 2 (-120).
For the release transition the vcriﬁcation.condition is
[true A (¥ 20)] 2 (y+12>0).
Both conditions are trivially true. Thus, since the initial value of the semaphore variable y is

nonnegative and it is modified only through the semaphore instructions request(y) and release(y),
it follows, by the Invariance Principle, that y is invarianlly nonnegative, i.c. m Oy > 0).

For another example, let us consider a typical assertion of the form:
Q(;7): atL > 4(7),

where L is a set of locations in I”.and ¢ does not depend on the location variables. For an arbitrary

transition « of Lhe form »
Ca - = fal¥
@-== =i

the verification condition is

Va: {cal® ALET) 2 &(HN} D (£ €1) > (@),

or equivalently,

{ca@ A (EZI) V S@) A (€ €L} 2 o(/aln)

There arc three cases Lo consider.




Case: U' & L (outside or leaving L). Then V, is trivially true, since the antecedent of the
implication is false.

Case: LG L, t' € L (entering L). Then V, is reduced to

ca(7) 2 ¢(fa(7))-

Case: £, € L (within L). Then V, is reduced to

lca(®) A @) 2 ¢(/a(®)).
Thus, we only have to consider a’s which fall into the two latter cases.
EXAMPLE: CONSUMER-PRODUCER

Let us illustrate an application of the invariance principle to the Consumer-Producer program
(program CP of [MP2]).

b:=A, s:=1, c¢f:=0, ce:=N ¢
£y : compute y, . mg : requesi(cf) .
&) : request(ce) my : requesi(s)
& : request(s) my : yz := head())
L3: t:=boy mg: tg 1= tasl(b)
L: b:=1t . my: b=ty
L5 : release(s) mg : release(s)
lg: relcase(cf) mg : release(ce)
;: gotoly my : compute using ya

mg: go to mog
— P, : Producer — — Py : Consumer —

The producer P; computes a value into y; without using any other program variables; the
computation details being irrelevant. IL then adds yy to the end of the buffer b. The consumer P,
removes the first element of the bufler into y2 and then uses this value for its own purposes (at
my). It is assumed that the maximal capacity of the bufler b is N > 0. The ‘compute using yo’
instruction references y2 but does not modify any of the shared program variables.

In order to ensure the correct synchronization between the processes we use three semaphore
variables: The variable s ensures that the accesses to the buffer are protected and provides exclusion
between the scctions (€3, £4, £5) and (mg, m3, my, ms). The variable ce (“count of emptics”) counts ’
the number of frce available slots in the buffer b. The variable ¢f (“count of fulls”) counts how
many items the buffer currently holds.
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The initial condition is given by:
atly A atmg A (b=A) A (s=1) A (e¢f=0) A (ce = N).-

We will use invariances to prove several propertiies of this program.

First, we observe that due to the semaphore variable rule

(1) B O[(s>0) A (c/>0) A (ce20)]

Mutual Exclusion

The exclusive access to the eritical sections

L= {t3,84, 5}

M = {m3,m3, m4,ms5}
can be expressed as:
B O~(atL A atM),

t.e., it is never the case that 7y € L and 73 € M simultancously.

Since only one at¢; and only one atm; can be true at a given instant it is suflicient to prove:
(2) E DO(atL +at M) < 1).

Note the mixed notation thatl treats propositions as numerically valued with true = 1, false = 0.

Formula (2) states an invariance properly. It will be proved by showing the invariance of the
assertion:

Q: atL+atM +s=1.

By the invariance principle we have to show that @, is true initially and that Q, is inductive for
P ! ;

Initially, we have that s = 1 and-that atly = atmg = 1 which implics that at, = at M = 0.
Thus the left-hand side of the equality in @y evaluates to | and we have that @, holds initially.

Next, we have to check that @, is induclive, i.e., preserved by every Lransition in I”. I'rom
inspection of Lhe variables on which @ depends, it is clear that it is sufficient to check the
transitions thal cither modify s or modily the atL or at M propositions. The only candidates for
modifying @, are therelore Lhe transitions &y — £3, &5 — &5, m( — mg, and ms — mg.

Take, for example, the transition £3 — £3. Going through this transilion changes at/, (rom 0
to 1 increasing the sum by 1. But, as s is decremented by 1, the sum remains constant. Similar
checks of the other transitions will show that Lhey all leave Lthe sum invariant. This cstablishes the
inductiveness of @(. - ‘
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We may therefore conclude by the Invariance Principle that
E O

t.e., @, is an invarianl of the program I’.

The combination of @, and the semaphore property O(s > 0) implics property (2) that
proves mutual exclusion.

' Proper Management of the Buffer

[lere we would like to show that

(3) E OO < |5 < N),

t.e., the buffer’s maximum capacity is never exceeded throughout the execution and no allempt is
made Lo remove an clement from an empty buffer.

We first establish the invariance of the following induclive assertion:
Q2 cf +cetatly g+atmy g = N

We use here our abbrevialed notation, where at €, ¢ stands for at{fy, ..., 4}, t.e., ™ € {lo, ..., ¢},
and atmy ¢ staunds lor at{m,, ..., mg}, t.e., 72 € {my, ...,mp}. As before, the whole conjunc-
tion is interpreted arithmetically: | standing for true and 0 for false. By inspection of the relevant
transitions we verily that Qg is indeed induclive and initially true, and thus is invariant, t.e.,

E 0Q,.

Next consider anolher necessary invariant assertion:
Q3 : ef +atlse+atmy 4 = b,

where |b] is the size of the buffer b. "To establish the invariance of Q3 we have to also establish Lhe
invariance of

Q4 H at(4 ) (lt|| = |b| + l)
and
@s:  atmy D (It2] + 1 == |b]).

We will check for the joint invariance of @3, @4, and Q5 and cstablish B O(Q3 A Q4 A Qs).

The conjunction @3 AQ4 A Qs is initially of the form (0 = 0) A(false D ...) A(false D ...) which
is clearly truc.

In order to check the inductiveness of Q3 A Q4 A Q5 we must check every relevant transition
of the program CI’. Lct us consider Lwo Lypical transitions:

8
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Q3 and Qs are not affected at all. In Qq, both atéy and |¢,| = |b] + | become true on this

transilion, so that Q4 is true after the transition.

l4 - ls:

Hcrc,'Qs, @4, and Qs are all affected by the transition and we would like, thercfore, to
illustrate the proofl of a verification condition along this transition in greater detail. ‘T'he verificalion

condition is:

[atty A Qs(T;7) A Qu(T;7) A Qs(7;7))

o [ Qa(r(x); £(@) A Qu(r(®); 1(7)) A Qs(r(7); £(7)) ]

where

r(wy, we) = (€5, 73)

f(b) S,CI, ce, ty, t2) = (th S,Cf,ce,tl, t2)

The proof procceds in the following steps:
atl4
at fs,s =0

Cf + atml,,4 = lbl

cf+1+atm 4= |b| +1
cf + (e5 € {15,(6})4" atm, 4 = |t||

1,
2
3
4. [t|=[o| + 1
5
6
7. Qs(r(7); /(7))

Consider next Q4(r(%); /(7)):
8. (l5=£4)3(|t||=|t||+l)
9: Q4(r(7); /(7))

As for Qs(r(7); /(7)):
10. ~atmy

11. atmy D (ltzl +1= ltll)
12. Qs(r(7); /(3))

given

from 1

by Q3

by Q4 using 1

by adding 1 to both sides of 3
£

from 5 using 4

by definition of r and f using Q3

tautology

by definition of r and [ using Q4

by 1 and mutual exclusion (2)
from 12

by definition of r and f using Qs
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This concludes the prool of the verification condition for transition €4 — £5. Therefore Q3AQ4AQs
- is induclive along the transition &4 — £5. We can similarly check that it is inductive along all the
other transiltions. -

Thus we have established:

E O(Q3 AQ4ARQs).

Let us now proceed to infer the proper management of the buffer b, i.e., O0 < |b] < N).

. First observe that by @3, [b] is equal to a sum of variables all of which are nonnegative. Thus
i we have

e O(p] > 0).

: On the other hand we have by Q3 and @3 that
bl — e

= atls¢ + atmy 4

al lz,,ﬁ + atm. g

N —(cf + ce) '

i 4
IA

iR bR < g,

The first equality is a dircct consequent of Q3. The inequality results from the fact that {¢s, ¢}
is a subsct of {€y, ..., €} and {my, ..., m4} is a subsct of {my, ..., mg}. The sccond equality
is a direcet consequence of Q.

Thus, we have
[b] —cf < N —(cf +ce) ;
which simplifies to
‘ o] < N — ce. !
Since ce is a semaphore variable we have ce > 0 which gives
| E O(] < N).
| Thus we conclude that properly (3),

B 00 < |5 < N),

holds. .

B S8




Comments

o Modifying the program

The necd for the auxiliary invariants @4 and @5 resulted from the splilting of the statements
concerning b into several stalewnents according to the single-access rule.

3 Having first cstablished the mutual exclusion of the regions L = {€3,€4,85} and M =

' {ma, ..., m5} we can obscrve that b is not really a shared variable, in that only one process at
. ~ a time can access it. Corrcspondingly, we could transform the program, after having established
= . exclusion, by replacing

l3: ty := bOyl
t.‘: b:= t[

- &: b:=boy
and
, mg: Yy := head(h)
2 mg3 . ty 1= tazl(b)
) my . b= to
by
b, my: (ya,b) := (head(b), tail(b)).

This would greatly simplify the subsequent analysis by making Q3 dircclly verifiable without using

Q4 and @s.
e Using virtual variables

Instead of introducing the auxiliary invariants Q4, @5 il is possible to define a virtual variable
b* by:

b* = if atly then t; else (if atmy then ty else b)
and then direclly prove a modificd version of Q3:

Q; : cf+atly g +atmy 3 = lb".

i The variable b* represents the intended value of b, where we use ¢, (¢ = 1,2) instead of b if b is
about o be changed to ¢;. Because we are focusing our attenlion on the value as soon as il is
obtained, we have modificd Q3 by cxtending the region {¢s, 8¢} into {¢4, 85,0} and contracling
{m1, m2,m3,m,} into {my, mz, m3}.

A SYSTEMATIC SEARCII FOR LINEAR INVARIANTS

In order to dispel the illusion of “magically” drawing the invariants Qy, Q2, Q3 out of thin
air, let us describe a melhod for a systematic scarch for such invariants. (See also [FRA], [CLA])

11
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An invariant of the form discussed here is camposed of three parts, such that the sum of the
first two is equal Lo the third. We represent such an invariant by:

(B+7)=C.

(a) B is the body of the invariant and is a linear expression in the semaphore variables and
other variables which are incremented by constants (lincarly) during cycles in the program.

(8) 7 is a sum of cxpressions of the form n; € L for some region L © L; and will be called a
compensalion erpression.

(¢) C is a constant.
We start constructing such an invariant by finding an appropriate body.

(e) In the body we look for a lincar combinalion of variables £ = Y a,y; such that the net
change in each cycle of each process is 0. Obviously, we restricl ourselves to cyclic programs, t.e.,
non-terminaling programs, in which cach process cventually returns to its initial location 5 and to
variables whose change along a eycle is constant and independent of the program flow. Semnaphore
variables usually have Lhis property.

Let us denote for Lthese variables the net change in y; resulting from a full cycle in process P
by Af. Then our combination k¥ = }_ a;y; should satisfy
ATE = Ya;Al = 0
for j, 0 < j < m. That is, we require that the value of the expression remains unchanged as a
result of a complete cycle of each ol the processes.

In our con .umer-producer example all our variables are linearly incremented and we have the
following table:

Al =0 A =0

L] s

| J— 2
A =1 Ap=-1

Alp=1 Al = -1
Al, = -1 A% = 1.
We look for a combination
E = a -slo-ag-lb|+a3-cf+a4-ce

such that Za;A{ =0 for j = 1,2. This yiclds the set of equations

a;-0+az+az—ay = 0

a-0—ag—azg+a;, = 0.

We will be interested in a nontrivial set of independent solutions to Lhese cqualions.

12




In this casc the equalions possess three degrees of freedom, and hence three lincarly indepen-
dent solulions are possible. The exact choice is irrelevant and we pick the following:

1. a|=1 02=03=a4=0
2. a3 =a4=1 ay =ag =20
3. ag=a4=1 a =a3 =0.

Thus for the following independent linear combinations, the nct change in each cycle of cach process

is 0:
By: 8
' Bs: ¢f +ce
4 .
B3 : |b] + ce.
L 4
" Note that 12, and I3 correspond to the bodies of @, and Qg respectiveiy, while 35 is a different
: invariant which will cnable us to derive the same conclusion as the combination of Q2 and Q3. For
the choice a; = a4 = 0, az = —1 and a3 = 1, we could gel 35 : ¢f — {b] which corresponds Lo
Q3 itself.

() Having a body B, to derive the right-hand side C of the invariant, we only have to substitute
the initial values implied by ©(Z) into the body. Doing this for our three invariants we obtain:

01: 1
Cg: N
‘ Cg: N.

(¢) Next, we determine the compensation expressions. Consider a given C and 13(y) and a process
Pj with locations {{o, ..., ¢.}. Since we assume cycling, £, is not a terminal location but branches
back Lo £y. I3y our assumption, the changes in B3(F) can be traced and are constant. Denote by
Bi(¥) the valuc of B at location £, =0, 1, ...ein the process, and let

6; = Bo(y) - Bi()-

Then the compénsating expression lor process Pj is given by

Z]‘ = i é; - (atl.-).

1=0

For example, to evaluate 6; for B = s in {2, above we have to compute:

olatey — #late,

Assuming that P is operating alone, (which is the basic assumption in the computation of the 6,,)
we take the difference between the value of s at & and its initial value at #y. Thus, we have

bop=06 =b;=0685 =68 =0,
' 13




since when P’ is being executed alone the value of s at locations &y, £y, €, g, &7 is equal to the
value of s at {y, t.e., s = 1. Moreover,

03 =64=05=1;

since when P is exccuting alone, the value of s at locations €3, €4, €5 is sinaller by 1 than the value
of s at €. lence, the compensation expression for the body s in P is

Zy = atly + atly + atls.

Computing the compensation expression Z; for the body B for cach process P; we form the
{ull invariant:

B+iz,~ = C.
i=1

FFor the three bodies we considered, we obtain the following three invariants:

Iy: s+atly s +atmg 5 = 1
Iy: c¢f+cet+atly g+atmy g = N
Iy: bl +ce+atly 4 +atmzg = N.

Note that Q3 can be obtained by forming the difference 73 — /3.

This method of deriving invariants has the advantage that no further proof is needed; indeed,
any invariant derived by the method is automaltically a true invariant of the program. But it
may ~nly be applied to variables which are modified by a constant in atomie instructlions, or to
progra,ns which can be transformed so as (o satisly this restriction.

EXAMPLE: BINOMIAL COEFFICIHINT

Consider next the program BC ([MI’2]) for the distributed computation of the binomial
cocfficient (3) for input paramcters n > k > 0.

Program BC, (Binomial Cocllicient  first version)

y=m, y:=0, yz3: =1, yqg:=1

bo: ifyy = (n— k) thengo to (., mo: tfys = k then go to m,
£y : request(yy) my: yz:=yg + |
{lz D b=y n l my: loop untily, +y2 < n
ly: y3:= ¢, | my: request(yq)
ty: releasce(ys)’ | lmg . t4:=ya/va
S TRES T ms: Y3 =1l
Lg: gotoly mg : releasc(y,)
f.: halt my: go lo rﬁo
m,: halt

P Iy
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The task of computing the binomial coellicient

(n)=n.(n_1). e (n—k+1)

k 1:2.-.. -k
is distributed between the two processes by having 1) perform all the multiplications while 1% is
in charge of the divisions. The values of yy, se., n, n~1, ..., n—k+ 1, arc used Lo compute
the numerator in Py (Lhe last value of yy, n — k, is not used), and the values of y,, s, 1,2, ...,
k, are used Lo compute the denominator (the first value of yq,0, is not used). e two processes
must synchronize in order that the accumulated product be evenly divisible by the divisors used
at my by £%. This synchronization - realized by the waiting loop at tny which essentially ensures
that exccution will proceed to my only when at least gy factors have been multiplied into ys.
We rely here on the mathematical theorem that the product of ¢ consecutive positive integers:
k-(k+ 1) --- -(k+1—1)is always divisible by 1!. For, consider the intermediate expression at
ma:
—nfn=1): - {n—j+1)

Vs = BRI (= )
where t <1< j < ny =n-73and yo = 1. The numerator consists of a mnltiplication of 1
consecutive positive integers and it is therefore divisible by @0 If j = i, we have to wait until y,
is deeremented by the instruction in &y from n — i 4+ 1 to n — 1 hefore we can be absolutely sare
that (n — 1 + 1) has been multiplied into y3. Thus, Process P waits at my until gy + y, drops to
a value less than or cqual to n.

The eritical scctions L = {ly, €, 84} and M = {my, 5, m}, protected by the semaphore
variable y4, ensure exclusive access Lo Lhe shared variable yy. Note that this progrien satisfies the
single critical access rule ([MI2]) since for example in the expression yy + g2 appearing at my only
¥ 8 critically accessed.

The invariant
lo: atly 4 +atmyg+ys = 1

ensures the mutual excelusion of the eritical sections. 1t is verifiable by the invariance principle in
the usual way.

Once this exelusion is established we ean transform this program to a sunpler program By,
such that there is o faithTul correspondence between executions of 13 and executions of 10y,
This implies Lthat the correctness of BCy will lolfow from that of 8¢,

Program BCy (Binomial Coceflicient  second version)

yi:i=mn, yp:=0y3:=1

fy: tfyy = (n— k) then go to ¢, mo: tfy: = k then go tom,
L yy:=p-m my: oY=yt |l
la: yy:=yy — 1 my: loop untdy, + y, < n
ty: gotoly my: Yy yalva
L. :  halt my: go tomy

m, : Ahalt




Next we introduce two virtual variables:

; yi = if atl, theny, — 1 else y,
y2 = if atmy 3 theny; — 1 else y.
1 The need for the virtual variables is similar to that of the compensation expressions discussed

above. The main invariant on which the correctness of the program is based is I3 below
v3 = [no(n—1)- (g7 +1)]/[1-2- 3]

which ties together yy, yo and yy (or their virtual versions). It is invariant in the sense that it
is preserved allee yy, y2 and gy has each beea properly updated. However since the updating of

) y1 and y3 in P for example cannot oceur simultancously, we define y which is the anticipated
¢+ updated value of yy as soon as yz is updated at €. Similarly, y3 dillers from yy between the
¥ updating of y, and the updating of y3 in .
i We use the following invariants:
I: [(n-k+vatt )<y <n] A [0<y, < (k- atm,)
d Iy: atmy D (yi+y2)<n
Is: gy = [n-(n=1)---(@i+0/[1-2- -y}
In Iy, the product of a zero number of terms evaluates to 1.
C The initiality of 1y to /3 is easily veriliable,

The two parls of Iy can be verified separately by considering the Lransitions g — £, £3 —~ L3
and mg — my, my — my respeetively.

To verify Iy we observe that on entering my, ¥y +y2 < n holds true. Any possible 17} transition
while % is at iy can only decrease Lthe value of yy + y,.

Consider now the verification of 3. The only relevant transitions are £, — £, and m3z — my.
Denoting the values of the variables after the transition by yy’, y3', ¥4 respectively, we obtain for

' tl—*('):
! ys = [no(n—)-(yr + 0] /[1-2-y])
= gy = [ne(n= 1) (yp A )y (02 3]
: as al £,y =y}
'
\ = Yy = [n-(n-1)- (i + 0 /0203

Similarely for the my -» my transition:

T [n'(n—|)~~(y,‘+|)]/[l-2--~y.:]
2 oyl = ne(n D)D) 02 (g 4 1))
16
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as at m3,y; = y3 + 1
= y3 = [n-(r—1)---(T+1]/[1-2--- 93]
The even divisibility of y3 by y2 at mnj3 is ensured by the fact that by I, we have that

i< <n-y.

Thus the number of consccutive factors in the numerator of y3 is al least y, which is evenly divisible
by ya!

PROVING EVENTUALITIES

Here we will consider general methodologies for proving propertics of the form

EPDOQ.

Many of the cases that we will study focus on a special kind of evenlualities called accessibility
statement. Ils characteristic form is :

atl D Oatl
guarantecing that being at £ we will eventually reach €. In more general form it can appear as:
(atl A ¢) D O(atl' A @),

where we associate a pre-condition ¢ with the visit at £ and a post-condition ¢' with the visit
at . The Intermittent-Asserlion Method (see [BUR], [MW]) uses this implication as the basic
statement for reasoning. Many usclul eventuality properlics are representable in Lhis form. In this
discussion we assume that € and # belong Lo the same process. It is however possible to consider
generalizations in which this assumptlion may be relaxed.

Our approach for proving evenluality properlics, called proof by eventuality chatns, is based
on cstablishing a chain of eventualitics that by transitivity leads to the ultimate establishing of
the desired goal (sce also [OL]). The main transilivily argument used here is:

BdDOP: and E Py D Od3 = E ¢ D O¢s.

Some common techniques thal we usc in our prools are:

o We split a situalion inlo several subeases and pursue each case Lo its conclusion.

o To establish ivmplications of the form
k (k.g(k)D O¢
we use induction

E ¢0) O ¢ and E Vn[p(n) D O(d(n-1)ve')] = & (3ké(k))D O¢'.
17




e We frequently cstablish B ¢ D © ¢’ by contradiction: we assume ¢ A (0 ~¢’ and pursuc the
consequences of this assumption. If we succeed in showing

E [@ADO~¢'] DO false,

then we will have established our desired resull. This technique is particularly uscful in
the verification of a statement of the form

atf O O ~até

in concurrent systems. The reason for that is that by assuming O at£ we are momentarily
(for the duration of the analysis) halting one of the processes at € and have only to
analyze the possible movements of the other processes. This usually results in a significant
simplilication.

We start by presenting an example with an informal proof of its correctness relative to
accessibility.

EXAMPLE: MUTUAL EXCLUSIO"! 1i3teK# k) INFORMAL PROOFS

As a first example, consider the solution to the mutual exclusion problem that was first given
by Dekker and described in ([D1J]). Here, we assume a shared variable ¢ that may be modified
by both processes and two private boolean variables y; and ¥, each being set only by its owning *
process bul may be examined by the other.

Program DK (Mutual Ezclusion - Dekker’s Solution):

ti=1, yy:=y2:=F

ly: exzecutle mg : execule
ly: y:=T my: yp:=T
& : if(y2 = I') then go to & mg: if(y, = I') then go to mq
&5 if(t=1) then go to ¢, my: if (£ = 2) then go to my
by: y:=1 my: yg:=F
€5 : loop until (t = 1) ms : loop until (t = 2)
g : gotlol mg: go lom
l;: t:=2 my: bi=1
Lg TR l mg: yp:=F ‘l
by: goto ((;“ my: go tomy -
— Py — Py -
The variable yy in process 17 (and y2 for % respectively) is set Lo 7" at £) Lo signal the intention .

of Py to enter its critical section at £7. Next I; tests al g if I2 has any interest in cntering its
own critical section. This is tested by checking if yo = 7. If yg = I, | proceeds immedialely to
its critical section. Il yo = T we have a’competition between Lhe two processes on the access right
to their critical scctions. This competition is resolved by using the variable ¢ (turn) that has the

18




value [ if in casc of conflict Py has the higher priority and the value 2 if P2 has the higher priority.
If P, finds that ¢ =1 il knows it is its turn to insist and it leaves ¥, on-and just loops between £
and £3 waiting for y2 to drop to F. If it finds that ¢t = 2 it realizes il should yield to the other and
conscquently it turns ¥y ofl and enters a loop at {5, waiting for £ to change to L. It knows that as
soon as % exits its critical section it will sel ¢ to 1 so it will not be wailing forever. Once ¢ has
been detected to be 1, Py returns to the active competition at £5.

We will procced to prove for this program both mutual exclusion and accessiblity. They
are complementary properlics in this case. The first assures that the two processes cannot simul-
tancously enter their respectlive critical sections. The second assures Lhat once a process wishes Lo
enler its critical seétion it will eventually get there.

Mutual exclusion

To prove mulual exclusion we show the joint invariance of the following three assertions:

Qr: (yl = T) = at{£21£31 €4,€7,€8}
Qx: (y2=T) = at{my,m3,my, my, mg}
Q3: gat{£7,£3} vV ~ at{m7,m8}.

That is,
E OQ A Q2 A Q3),

where the inilial condition is given by
atly A atmg A (t=1) A (y1 =y2 = F).

The inductiveness of the firsl two asserlions is easily checked by considering the different
transitions in cach of the processes. They certainly hold initially.

To show the invariance of @3 which is the statement of mutual exclusion consider the possible
transitions that could potentiaily falsily this assertion.

One such transition is £; — & while at{mq,mg}. llowever by Qy, at{mq, mg} implics yp = 71
so that the transition €3 — {7 is disabled. Similarly for the transition my — my while at{f;, £3}.

Accessibility

Accessibility in Lhis program is given for 7 (the case for /% is similar) by

] att, o) Oatt-,.

The process P signals its wish to enter the critical section by moving from £5 to £;. We then
would like Lo prove thit it eventually reaches the eritical scetion at £4.

19
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In analyzing this program we have to interpret the ezecute instructions at €y and mg as a
non-critical scction. Consequently we cannot assume that being at €y we will eventually get to £;.

Hence the transition graph representation of the execute instruction at £y (and similarly at my)
should be represented as:

pp— true — o
C ‘/@ L —( 4

true — (|

That is, therc is a nondeterministic choice between staying at €y and procceding to ¢;.

We will proceed to prove

Theorem: E atl), D O atly.

Here we will present an informal proof of the statement, followed by the justification of some
of the steps used in the prool. Motivated by recurrent palterns in the informal prool we will then
introduce proof principles that could be used to construct a formal version of the same proof.

The proofl of the thecorem consists of a sequence of lemmas.
Lemma A: & {atly3 A (t=1)] 2 Oatly
Proof of Lemma A:
Assume to the contrary thal I’y never takes the £; — £; transition; then henceforth
Ol(atéy v atl3) A .(t = 1)

since the only instruction assigning to ¢ a value different from | is at €; and as long as ¢ = 1 and
the transition £, — #7 is not ltaken, P is restricted to {€s, €3},

Under this invariance assumption at{fs, €3} A (¢ = 1), lct us check the locations of P,.

case a: I3 is at my. Then yo = I' and will stay so. By fairness [7; must eventually get Lo &
and in the next transition out of €2 must go to €7 (yg being F'). Thus

E atms D O atly.

case b: P is al my. Then by the fairness requirement it will eventually reach my so that by
case g

E atmy D Oally.

case c¢: Py is al mgz. Then in the next transilion out of mg, ¢ is still [ so the my4 branch must
be taken. Consequenlly by case b

E atmgz D Oatly.

case d: I, is at my. Then sinee, by Q,, (atfy V atf3) D y, = T, and since we assumed that
Py is restricted to {€2, ¢4}, the next transition of 1% will take us Lo m3. Thus by case ¢

20




g ET T T

¢ e ——

also have

E atmg D Oatly.

case e: P is at m;. Then obviously eventually P» will rcach mg so that by case d we have

E atmy D Oatly.

case [: Py is at mg. Then eventually P will get to my, so by casc e
E atmg D Oatéy.
case g: Py is at mg. Then either it will stay in mg forever or eventually exit to m,. In the
case Lhat it stays in mgq lorever we have by Qq, O(yz = F). Thus in the next transition

out of & we must proceed to £7. Otherwise #% will eventually get to m( which by case f
leads again to atf;. Thus in any case

B atmg D Oatly.

case h: Obviously by lairness
E (atmyV atmg V atmg) D < atmy,

so that by casc g, any of these cases also leads to the eventual realization of atf;.

Thus by analyzing all the possible values of 7y in Py we showed that et #7 is eventually realized
in any of them. Conscquently we have that

B [atls A (t=1)] D> Oatly.

which is the desired result of Lemma A. |
Lemma B: & [at{ls, ...,l} A (t=2)] D ~ at{mg, mg,mo}

Proof of Lemma B:

Consider first the invariance of the following siatcment:
Qa: (t = 2) D ~ atmg.
The transitions which may possibly falsify this stalement are:

o {7 — lg while P; is at mg. llowever, due to @3, atf; A atmy is an impossible situation.

e my — mg while ¢ = 2, but the transition scts ¢ = I, so that Q4 docs hold after the
transition.

Having cstablished ® O Q4 we proceed to establish B O Q5 where

Qs: [at{ts, ...t} A (¢ =‘2)] D ~at{mg,my}. ‘ ‘
21




Let us investigate the transitions that could possibly falsify @5. The relevant transitions are:

e {3 — {3 while at{'n-zg,mo}. However by Qq, at{mg, mq} implics that yo = I which disables
this transition.

e mg — mg while t = 2. llowever in view of @4 the situation (¢ = 2) A atmg is impossible so
that the transition is also impossible.

Taking the conjunction of Q4 and @5 we can infer the result of Lemma B, 1
Lemma C: B atlsy D Oatly.

Proof of Lemma C:

If we are al &5 there are two possibilities. Lither we will eventually get to € with ¢ = 1 or we
will stay forever in £5 with t = 2 continuously.

In the first case we proceed to £y and reach £2. There we either enter £7 immediately or get
to €3 with ¢ = 1. The value of ¢ will nol change on the way since the only possible change of ¢
from | to 2 is performed by Py al £ — fg. By lemma A, being at €5 with ¢t = 1 ullimately leads
to £y,

The other ease is in which O(t = 2 A atf5). By lemma 13 we have that O(~ at{mg, mg, mq}).
Since atfs is permanently true so will be yy = F by Q.

Counsider now all the possible locations of 7z in % excluding mg, mg, and mgp:
atmy will eventually lead us to mng and tuen ¢ to 1.
atmo will lead us to mq since yy = F and then to mg.
atmng will lead us Lo my since t = 2.
atm, leads Lo my.
atmg leads to my.
atmg, will cventually lead to mg, having ¢ = 2.
atm, l(“:\ds lo ms.

Jonsequently all the loeations in Py eventually cause £ Lo turn to 1 and I?) will eventually get
out of f5 and proceed Lo 3 with £ = 1. Lemma A then establishes the desired result. B

We are ready now to prove the desired accessibility theorem, that & atly D O atls.

Proof of Theorem:

Proceed with 7 from € to f5. There we cither immediately cater & or arrive at €3. Consider
the next instant in which /7 is scheduled. IF ¢ = 1 we are assured by lemma A that we will
ultimately get to ¢4, I £ = 2 we proceed to &4 and ¢ from which we are assured by lemma C of
eventually getting Lo #7. Thus we will get to ¢7 in all cases. |}
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PROOI PRINCIPLES FOR EVENTUALITILS

In order Lo present proofs such as the above in a more rigorous  perhaps even machine
checkable - style, we proceed to develop several proof principles. These will enable us to establish
the basic accessibility steps ensuring the eventual passage fromn a localion Lo its successor under
the assumption of fairness.

All predicates below are “state predicates” expressed by classical formulas, and will generaliy
depend on the location variables T as well as on the program variables .

A predicate ¢ = ¢(; 7) is said to be x-invariant, where x = x(7; 7), if for every transition

Q} (y) — [7:= f(¥)] J@

the following formula holds:

l[att A (@) A x(T9) A x(r(7); J(B) A $(T;9)) D $(r(7); (7).
That is, ¢ is preserved by any transition which preserves x.

In all the following we will use O x to denote that x is an invariant externally given and
guaranteed to be continuously true. It will be useful in conducting conditional proofs.

The Escape Principle for Single Location

Consider a location £in process P;. Let ¥ = {ay, ..., ax} be a sl of transitions originating
in €. Let €1, ..., €% be the locations to which the transitions ayq, ..., ax lead and ¢y, ... ,Ck Lthe
enabling conditions associated wilh ay, ..., ag, respectively. We do not require that ¥ be the set
of all transitions originaling in £,

eir(y) - [zl== Si(y)] a\\'l;‘)

ce(y) = [:= fm)]
o o '\e_kD

We require that location € be deterministic, that is, the conditions ¢ and ¢ on any Lwo distinet
transitions a and o’ (nol. necessarily in X) originating in € must be disjoint, t.e. ~ eV ~ ¢'. In all
the programs that we will study all locations would be deterministic exeept Tor those that contain
an ezecute instruction. We will never apply the escape rule to these locations.
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The Rule of Escape (ESC):
Let ¢, x, and ¥ be predicates such Lhat:

A: ¢ is (atl A x)-invariant,
This means thal as long as we stay at € and x is preserved, so is ¢.

B: Any of the a;, i = 1, ...k, transitions ol ¥ that preserves x and is initiated with
¢ true, achieves 9, i.e., ¥ will hold after the transition. This is expressed by

[ate A ci(7) A (7:3) A x(T;7) A x(ri(@); @) 2 Y(ri(7); fi(9))
for every i =1, ..., k.

C: ¢ A x at £ cosures that at least one ¢;, © = 1, ..., k, is true (the transition is
enabled), ‘e,

k
[ate A &(7;9) A x(T:0)] 2\ el@).
i=1
Then under these three conditions we may conclude

E [atl Ad AOx] > <O

That is, being at € with true and being assurcd of the continuous holding of
’ g
guarantees eventual realization of 4.

To justify the principle consider an execution which starts al ¢ with ¢ truc and continuous
assurance of x. By condition A as long as I’ is not scheduled we remain at £ with ¢ A x true.
By condition C this implies that all that time sz‘ ¢; is also continuously true. Therelore by
fairness eventually I; must be scheduled in a state in which ¢, x, szl ¢, all hold. Conscquentiy
by determinism of £ one of the a; € ¥ transitions must be taken and by condition I3, % must be
recalized.

There are'some variations and generalizations of Lhis basic principle which are discussed next.

The Rule of Alernatives for Regions

The first generalization considers exits out of a region (set of locations) rather than a single
location. This principle applies also to nondeterministic locations.

Let I, © L; be a set of locations in the process Iy and ¥ = {ay, ..., i} the set of all
transitions originating in L and leading to locations €', ..., €% outside of L, t.e., & & L.




The Rule of Alternatives (ALT):

Let ¢, x, ¥ be predicates such that:

A: ¢is{atl A x) invariant.
This means that as long as we stay in I, and x is preserved so is @.

B: Anyof the a,,i =1, ..., k, transitions ol ¥ that preserves y and is initiated with
¢ true, achieves 9, t.e., ¥ will hold after the transition. This is expressed by:

l[atL A (3) A ¢(m7) A x(m9) A x(r(®); L@ 2 (r(7); fi(y)

for every 1 =1, ...,k.

i
Then under these conditions we may conclude:
E [atl. A ¢ ADOx] O [O(atLAg) VvV Ol
That is, being initially in /. with ¢ true and being assured of the conlinuous holding of
X guarantees that we have two alternatives: cither we stay in L with ¢ permancntly
true, or achicve ¥.
Note that since we do not have any condition similar to C above thal guarantees the eventual
realization of 1, we must also consider the possibility of reraining in 1, and satisfying ¢ forever.
To juslify the principle, consider an execution which starts in I, with ¢ true and continuous
assurance of x. By condition A as long as we stay in L, ¢ will remain true. By condition B once
we take any of the a, transitions in this situation ¥ will be realized. 1lence the concelusion follows.,
Note that the ALT rule can be applied to a region consisting of a single location. Thus for an
ezecute instruclion:
|
¢ [l r 4
rue — o
TR N o
true — [ ] ] !
. ” /\_/ g ¢
(£3]
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we may take L = {¢} and % = {a;} Lo obtain

B atf DO [Oatlv Oatll)

The Semaphore Rule

Rule KSC above is adequate for dealing with locations for which the disjunction of all their
exit conditions {on all the outgoing transitions) is identically true. A location which does not
salisfy this requirement is called a semaphore location since in a scmaphore request instruclion,
represented by

) y>0-ly:i=y-1 —

the exit condition F,is y > 0 and is not identically truc, nor is it necessarily continuously enabled.
Consequently rules SC and ALT are only sullicient lor reasoning about programs that contain no
sempahore localions. Once we have semaphore locations we need a stronger rule,

Let £ be a (possibly semaphore) location and £ = {ay, ..., ar} the set of all the transilions
originating in £. Let £ and ¢;, for i = 1, ..., k, be respectively the location Lo which a; leads and
the condition enabling it.

ci(7) = [7:= 1i(¥)] O
ll

(@) — W= @) -
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The Semaphore Rule (SEM):
Let ¢, x and ¥ be state predicates such that:
A: ¢ is (atl A x)-invariant.
This means that as long as we stay at € and x is preserved, so is ¢.
3 B:  Any of the a4,i = I, ..., k, transitions of ¥, which preserves x and is initiated
: with ¢ true, achicves 9, i.e., ¥ will hold after the transition. This is expressed by:
: [atl A ci(@) A o(m9) A x(m:9) A x(r(®) A7) 2 (r(7); fulm)
. forevery 1 =1, ...,k.
. t
A . C: I (¢ A x) holds permanently at € then eventually one of the ¢;, £ =1, ...k, will
be true. That is
., E Ottt AdAx) D OV e
o Then under these conditions we may conclude:
n. E (att Ao AOx) D O
S 4
That is, being at € with ¢ truc and being assured of the continuous holding of y
guarantees the eventual realization of 9, |
' Note that condition C of SIIM is weaker than condition C of ESC in that it does not require
‘ [y = szlci to be true whenever atl A ¢ A x holds bul only requires it to be eventually
realized. llowever, condition C here is a Lemporal statement and requires temporal reasoning for
its justification, while condition C of ESC is static and requires only classical justification.
l To justily this rule consider an exccution which starls at € with ¢ true and x continuously

maintained. Condition A ensures that as long as we stay atl £, 9 Ax will be preserved. Tt is impossible -
that we stay at € forever because by condition C this would imply that /2y = Vf | €, which is
the full exit condition of node ¢, is enabled infinitely often while process ) is never scheduled. By
fairness we must have P scheduled at least once while /5, is true. This, by condition B and the
permanence unlil this moment of ¢ A atl A x, will cause 9 Lo be realized.

It is important to realize the differences between a “semaphore loeation” and a “busy waiting”
location. For comparison consider the following two simplified cases:

(O

(a) Semaphore location:

(b) Busy waiting location:

. @ C—»[...] u’v/e‘l

~C—|..

A X
]l
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(a) In the semaphorc location case the fairness requirement demands that the scheduler will
schedule this process at least once while its ¢ condition is true provided the condition is
true infinitely often. Thus for the SISM principle which is appropriate to this case we only
require that ¢ is realized infinitely often. This is exactly condition C which in this case is

k O(attAdAX)D Qe
Y or is equivalently
E DattAdAx)20OCe.
4] (6) For the “busy wailing” situation, since the exit condition is ¢ V ~¢ = true, the only

obligation that the scheduler has is to eventually schedule this process. T'here is however
nothing to prevent the process from being scheduled at exactly these instants in which ¢

‘ is false. Consequently, an infinitely often true ¢ is not sulficient to ensure an exit to .
; Instead we must require a stronger guarantee, that ¢ be permanently true. Therelore, the
. corresponding condition C for the “busy wailing” situation for this case is

E (atlAPAX)De,
which is equivalent Lo
B Oat/ Ao Ax)D Qe

That is, il staying forever at £ guarantces the permanence of ¢ then we will eventually exit
from € to ¢. This can be derived from the [5SC rule.

, Since E O¢ D © ¢ we have the lollowing robustness metatheorem:

A program that has been proven correct for an inlerpretation of its semaphores
as “busy waiting” locations, is automatically correct for the implementation
of thesc locations as true “semaphore” locations.

Consider, for example, the problem ol accessibility of eritical sections for the mutual exclusion
program ME. In the roof to be given later we will reach the conclusion

E Oatls > OOy 5 ya),

where the instruction at £ is

Thus, this proof is sound for the interpretation of the loop primitive as “busy wailing”. By
the robustness metatheorem any more ellicient implementation of the loop primitive, in facl any
implementation at all which is “just”, ie., eventually schedules cach process, will also cause the

J ls . loop while y; = ys.
|
! program to behave correctly.

' The Single Path Rule

In this derived rule we repetitively apply the ESC rule to a chain of locations.
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let 8,8, ...,¢ be a path of deterministic locations in 1% with an hmmediale Lransition
1»€2, kil b

a, fromevery £, Lo &, ,,, t =1, ..,k

cly) = Nyl culy) <y - faly)]
"\ll/\-;_ «; - \\")-‘ﬂ ,k/,) . ay - >,y

The Single Path Rule (SP):
Let x, ¢y, ..., &k, and @p 1 = ¢ be predicates such that:

A: BEach ¢, is{atl, A x) invariant, 1 =1, ... k.
This means that as long as we stay at &, and v is preserved so is @,

B: Each transition a,, ¢ = 1, ... k, which prescrves yoand s initiated with ¢, true

achicves @4, that is
fatt, A ely) A oulmig) A xmiy) A (r(ai L)) O oo (ndn) ).

C: (¢, A y) aLl g, ensures that ¢, is Lrue, te.,

[al’n A ¢y A ,)(] 2 ¢
Then under these three conditions we may conclude
k VE (attAB) A DY O Ou.

That is, i we start anywhere in the path with the appropriate ¢, true and y continuou-ly

influence on the possible execution sequences.

tions which are pure temporal logie deductlions, since we have not included an axiomatic system for
temporal logic in Lthis paper. ITnstead we will justify these deductions by saying “temporal reason-
ing” or “temporal deduction.” The reader is invited to convinee himself semantically that these
deductions are indeed sound, that is, any sequence Lhat satisfies the premises must also satisfly the
consequence. Thus our proofs will consist, similarly Lo regular proofls, of a sequence of temporal
formulas wilh a justification for cach line in the sequence. A line in a prool may be justified in

one of the lTollowing ways:

maiatained we eventually wind up having .

This rule is obviously a generalization of 15SC and is justified by a repeated application of
B 4]

15SC to &y, ..., 0k (with 2, = {a,}) respectively.

This rule ean be somewhat generalized Lo a more general graph than o path. The SPP prineiple
[i4 4 8 § ! i

also applies instead to a tree in which every node has an edge directed towards its ancestor.

This concludes the list of semantic proafl rules reflecting the structure of the program and its

In the following “formal” proofs of eventuality properties, we will intentionally omit manipula-
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(a) [Ifitis a valid first-order Ltemporal logic formula,
(6) If it is an instance of one of the proof rules above.
(¢) IMitis alogical or temporal consequence of some preeeding lines,

Given a deductive system for our logic (sce [MANZ2]) we will be able to justify steps of the
form b and ¢ using the axioms and rules of inference. Alternatively, ¢ steps ean be justified using
a decision procedure for validity in (propositional) temporal logic ([BMP]). For our purpose of
presenting proofls at a level which is not too formal, yet displays suflicient detail to be convincing,
the style of semantic proofs secins most appropriate.

Nole that our only reference Lo the program itsell is through the proof principles ESC, ALT,
SEM and SI°.

In presenting formal (semantic) proofs we will work our way gradually through examples that
use only the SC and S rules first, then examples that use also the ALT rule and finally examples
using semaphores and the corresponding SKEM rule.

EXAMPLE: COUNTING TREE NODES

Consider first the use of eventuality chains in proving the total correctness of Lhe sequential
program TN for counting the nodes of a binary tree.

Program TN (Counting the nodes of a tree):
S:=(X), C:=0

b: o S={) then goto ¢,
6 (T,S):= (hd(S), t§(S))
L. if T = A then goto &
y: C:=0C+1

ty: S:=¥H7)-1(T)-S

ts : goto &y

¢ :  halt.

The program operates on a tree variable 7 and a variable § which is a stack of trees., The input
variable X is a tree. The output is the value of the counter C. lach node in a tree may have zero,
onc or two descendants.

The available operations on trees are the funclions ¢(T) and 7(T) that yield the left and right
sublrees of a tree T respectively. If Lthe tree does nol possess one of these sublrees the funclions
return Lhe value A.

The stack S is initialized to contain the tree X. Taking the head and tail of a stack (lunctions
hd and ¢l respectively) yields the top clement and rest of the stack respectively. The operation in
¢; pops the lop of the stack into the variable T. The operalion at €4 pushes both the right subtree
and the left subtree of 7" onto the top of the stack.

At any iteration of the program, the stack S contains the list of subtrecs of X whose nodes
have not yct been counted. 1ach iteration removes one such subtree from the stack. If it is the
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empty subtree, T = A, we proceed to examine the next subtree on the stack. I it is not the empty
subtree we add one to the counter C and pushes the left and right subtrees ul T to the stack.
When the stack is empty, § = (), the program halts.

Denoting by | X| the number of nodes in the tree X, the statemnent to be proved is formulated
as

Theorem: ® atly D> Ofatl AC = |X|).

[n order Lo prove the theorem we first prove a lemma:

Lemma: R [atly A S=t-8 A C=c] O Olatly A S=38 A C=c+|t.

The lemma states that being at £y with a tree ¢ at the top of the stack S, we are assured of
a later visit at o where t has been removed from the stack and its node count |t} has been added
to C.

Denote by I5(n) the statcment:
En): Vt,s,c{latlp A S=t-s A C=c A |t|<n] D
Olatly A S=3 A C =r¢+ ti]}.

This statement is the restriction of the lemma to trees with node count not exceeding o for some
natural number n > 0.

Proof of Lemma:
The lemma can then be stated as B Vn. E(n); it is proved by induction. We have to show
(a) & I(0)
(6) & E{n) > E(n+1).

(a) Sincei-s # () and |t] =0 Dt = A we may apply the SP rule to the path €y — ¢, — 2, — £y
and obtain

1. B [atly A S=t-s A C=c A |t|]=0] D
. Clatly A S=8 AN C=|
This establishes & [£(0).
(b) To show E [i(n) D I{(n + 1), consider an arbitrary n,n > 0, and assume
2. 'h E(n).
Then
3. B [atly A S=t-8d AN C=¢c A Jl]=n+1] D j

Olatly, A S=t')-r(t')8 A C=c"+1 A |U|=n+1] !
' 31
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by the S rule applicd to the path lp — & — €3 — {3 — ty =ty — Lo, using || =n+1 D ' #
A.

We now use an instantiation of F(n) with t = (t'), s = r(t')- &', and ¢ = ¢’ + 1 (which is
justified since |¢] = [¢(¢')] < n + 1) to obtain

- 4. # [(atlog A S=Lt)-r(t) s AC=c+1] D
\ :
Olatly A S=r(t')-8 A C=¢ + 1+l ;
By 3 and 1 we have ;
¢
5. mlatly A S=t-8 A C=c A |t|=n+t1] D 3
Olatly A S=r(t)-8 A C=c+1+[€(t) A |[t'|=n+1]. ‘
i
We now apply an instance of /(n) again, this time with ¢ = r(t'), s = &, and c = '+ 1+ ()| :
(which is justified since |t] = |r(¢')] < n + 1) to obtain ;
6. mlattyg A S=r(t')-s AC=c+1+]((t)] D i
3
Olatto A S=18 A C=c +1+[(')] +|r(¢)]. {

By 5 and 8 we have

7. wlatly A S=t-8 A C=c A ||=n+l1] D

Olatty A S=148 A C=¢+1+[(t")+]|r(t))]

Using the property

[t] >0 = |t =1+[t) +|r(t)]
we obtain:

» 8. Blatlp AS=t -8 NC=c Al|]=n+1] D

Olatty A S =4 A C =7 +]|V|.

Universally quantifying over the variables ¢, ' and ¢/ and then renaming them to t, 8 and ¢,
respeclively, we obtain

9. mVt,sc{latly A S=t-a A C=c A |t|=n+1] D

Olatly A S=38 A C=c+|t]]}.

‘ Line 9 holds under assumption 2 for every n,n > 0. Combined with 1 this gives :

10. [L(n)w [F(n+1).




' Therefore, by the deduction theorem we have

11. B E(n) D E(n+1).
This concludes the proof of the lemma.

Proof of Theorem:

To prove the theorem we observe that
12. mlatly AS=(X) AC=0] > Olatlo A S=() A C=|X|
by the lemina with t = X, 8 = (), and ¢ = 0. But
" 13. B [atlg A S=() A C=|X]|] O Olatt, A C=|X]||
by SP applicd to &g — £,.. Therefore, by combining 12 and 13, we have

14. E [atly AS=(X) AC=0] D> Olatl, A C = |X]|]

ie.,

Pl

15. ® Olatt, A C = |X]|). 1

One cannot fail to sec the closc resemblance between the temiporal proof presented here and
the informal inermittent-assertion proof conducted in [BUR] and [MW]. Our SP principle replaces
the “little hand simulation” of [BUR].

EXAMPLIS: MUTUAL EXCLUSION (DEKKER)  FORMAL PROOI'S

We will now present a formal prool of the accessibility proof of the program DK . Aninformal
proof of this was presented before and we advise the reader to refer to it while reading the Tollowing
proof. The accessibility statement to be proved is

e T RV Nt A LA K VGt o

Theorem: ® atl, D O atdly.

We will make use of the invariants derived before, namely:

r 0O(Q /\Q2./\Q3/\Q4)

where

Qi: (m=T) = at{ty,3,0,4,t)}
Qa: (y2=T) = at{my,my, my,mq,mg}
Qs: ~at{ty, g} v ~ at{my, mg}
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and

Qi: [at{ts, ..., L} A (t=2)] D ~ at{mg,mg,me}.
Q.4 was proved by the standard invariance rule in Leinma /2 and will not be reproven here.

The proofl of the theoren consists of a sequence of lemmas.

Lemma A: & latly3 A (t=1)] D Oatly

Proof of Lemma A:

1. & [atlesz A (t=1)] D {OfatlyaA(t=1)] v Oatly}

by the ALT rule at £2,3 where ¢ is t = 1. Note that by t = 1, the €3 — £, transition is necver
possible.

2. & [atlyy A (t=1) A atmg] D [atlys A (t=1) A atmg A (y2 = F)]
by Q2.
3. k [atlys A (t=1) A atms A (y2=1F)] D Oatly

by SI” applied to the path &5 — €, — € where ¢3 = ¢y is (t = 1) Aatms Ay, = F) and ¢ is
atl-,.

4. & {Olatl,z3 A(t=1)] A atms} D Oatly

is a temporal conclusion of 2 and 3.
This corresponds to case a of Lemma A in the informal proof.

Next we have
5. & Olatlyz A (t=1)] D Olatles A (t=1) A (11 =T))
by Q.
6. & {Ofatlys A(t=1) A (11 =T)] A at{m 4;me}} D Oatms

by the SP rule applied 1o the path mg — m; — my — m3 — m4 — mgs where x is atly 3 A (¢ =
DAp=T).

7. m {D[attz,:;/\(tz l)l A at{m,,_4,me}} O Oatmg

by 5 and 6.

8. & {D[dt’g"g/\(tzl)l A atm,,,s} D Oath
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by 7 and 4.

This covers cases b, ¢, d, e, f of the informal Lemma A.

We have
9. E atmg D [atmg A (y2 = F))
by Q3.
10. & [atmg A (y2=F)] D> {OfatmoA(yz = F)] v Oatm,}
by ALT at mg where ¢ is yo = F. Therefore
11. B atmg D [O(y2 = F) vV O atmy]
by 9 and 10.
12. & [O(y2=1F) A atly3 A (t=1)] D Oatly
by the SP rule applied to €3 — €3 — €3 where g3 = Py ist =1 and x is yo = I'.
13. ® {Olatly3 A (t=1)] A O(ya = F)} 1> Cuatly
is a consequence of 12. By Lz.xking the disjunction of 13 and 8 we get
14. B {Olatlyz A (t=1)] A (O(yz = F)Vatmy )} D Oatly
and then
15. E {D[aifg’s A({t=1)] A atmg} D Oatly

is a consequence of 11 and 14.
This covers casc ¢ of the informal Lemma A.

We also have

16. = {Olatla3z A (t=1)] A atmg. 9} DO Catmg
by the SP rule applied to the path mq — mg — mg — my.
17. = {Olatly3A(t=1)] A atmz 9} D Catly
by 15 and 18.
This covers case h of the proof.

Taking the disjunction of 8, 15 and 17 we obtain

18. n D[dt[-g,;g /\(t = l)] ] Oatl-,.
35
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Taking together 1 and 18 yields
19. E f[atlys A (t=1)] DO Oatly

which is the result of Lemimia A.

Lemma 2 is an invariance property E (4 and is proved using the invariance principle.

Lemma C E atfsD <> atty

Proof of Lemma C:

1. E atly > {Datls v Olatlg At =1)]}

by the ALT rule at #5.

2. £ Ot=2) v Ot=1) 1
is a termporal tautology using the obvious invariance (¢t = 1) v (t = 2).

3. £ Datly O {D[gt€5 A(t=2) Vv Olatts At = 1)]} %
is a tompora‘l conscequence of 2.

4. E latés A{t=1)] DO Olatbg At = 1) {
by the ESC rule at €5 where ¢ is t = 1.

5. & Oatty o {Olatls A(t=2)] v Olatls At = )]}
is a temporal consequence of 3 and 4.

6. £ atfy; D {Olatls A(t=2)] v Olatls A (t = 1)]}
by 1 and 5.

7. & Oatbs A{t=2)] O OfattsA(t=2)A(y1 = F) A atm, 4]
by Q@ and Q4.

We have

8. & {Dlatls A (t=2)] A atms} D Olatls A(t = 1)) i
by the ESC rule at mny where y is at (?5'/\ (t=2),¢isatly A(t=1). .

9. £ {Ofatls A (t=2)] A atmg} D Olatls At =1)) if
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by 8 and 4.

This covers casc a of the informal Lemma C.
Denoting
Xo: atls A(t2=2) A (y1=F) A atm,. 4
we have
10. & [Oxo A at{my2,ms.1}] D Olxo A atmy]
by the SP rule nppiied to the path mgy — mg — mg — m; = my — 4.
11. & [Oxo A at{myz,ms7}] D Olatls A (t = 1))
by 10 and 9.
This covers cases b, d, e, f, g of the informal Lemma C.
We have
12. & [Oxo A atmg] D Oatmg
by the IXSC rule at m3. Thus
13. B [Oxo A atmg] D Olatls A (t=1)
by 11 and 12.
This covers case ¢ of the informal Lemma C.
Taking the disjunction of 11 and 13 and noting that xg D atm; 7 we obtain
14. & Oxo 2 Olatfsg At = 1)).
Combined with 7 this gives
15. & Ofatls A(t=2)) D Olatlg At =1)).
Combined with 6 we oblain
16. 'k atls D Ofatlg At = 1)).
Now we can derive
17. & [atlig A (t=1)] D Olatleg At =1)]

by the SP rule applied to the path &g — £; — £, where ¢ = ¢y is (t = 1), ¥ is atly3 At = 1).
Using now Lemma A we obtain

18. E [atel,g A (t= l)] D Qatly
which together with 16 gives

19. & atls D Oatly.
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Proof of Theorem:

Consider now the final proof of the theorem

1. E atly D Oatly
by ESC rule at &, |
3 2. E atly O Olaté; V atls)

v by the ESC rule at £,
: 3. E atéy D [O atl; v Oat£3]

which is temporally equivalent to 2
- 4. E atly O {Olatéa At =1)] V Oatly}

i by the ESC rule at 44
1 5. E [atly A (t=1)] D Oatly
’ . _ by Lemma A

. 6. E atly D Oatly
by ESC rule at ¢4

7. E atly D Oatly
by Lemma C and 6

8. E atly O Oatly
by 4,5, and 7

9. E atly; D C at£7

by 3 and 8 -
10. & atf, 2 Oatéy
by 1 and 9
This concludes the proof of the theorem.
EXAMPLE: CONSUMER PRODUCER 11

Consider next proving accessibility for the Consumer-Producer program (program CP). We
assume that the computations al €g and at m; eventually Lerminate. The statement to be proved
is:

Theorem: E atéy DO <atly

i We will use in our proofl the invariants which were established before

: E O(QoAQ1AQ2)

where

Qo: (cf 20 Af(ce>0) A (s3>0

Qi: atly. s +atmyg s+38 = 1

Qe: cf+cet+atly g+atmy g = N | i

Note thal this is the irst example that uses semaphores.
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Assuming that the computation of y; at &5 eventually terminates we may conclude
B atly DO O atd.

. The rest of the thcorem is proved by two lemmas. Lemma A ensures that we get from £, to £
and Lemma B ensures that we get from €5 to £3.

- Lemma A: E atly DO Oatly

Proof of Lemma A:

Since location £; contains a semaphore request instruction we will use the semaphore rule SIEM
to show that eventually P; will be granted access to 3. The premise needed Tor the SEM rule is
Oate; D Ofce > 0). An intuitive interpretation of this premise is that if we wait long enough at
; - £y, ce will cventually turn positive. To show this, we give first an informal exposition inspecting R
- the different locations in which P; may currently be.

case a: Py is at mg. Then eventually it will exccule the release(ce) instruction to get ce > 0
as required. i
f case b: I» is at mgy, mg, my or mg. Then it will eventually get to mg which by case a will

cause ce to turn positive.

case c: I’ is at my. Then since P} is at ¢;, s = 1 by @,. Since we assume that I’} is waiting
A at £,, s will remain 1 as long as P stays al mng. By the semaphore axiom applied at my,
Py will eventually proceed to my and by case b, ce will eventually turn positive.

case d: Py is al mg. Then since Pyisat £y, ¢f +ce = N > 0 by Q. If ce > 0 we have proven ‘

our claim. Otherwise ¢f > 0 and will remain so as long as I’ stays at mg. Again by the
g, semaphore axiom /% must eventually advance to m; and then by case ¢, ce will eventually
) turn positive. ‘

case e: I3 is at m; or mg. It will eventually get to mg and then by case d, ce will eventually
turn positive.

Let us now proceed with the more formal proof:
3 1. & [Oatéy A atmg] D [Oatly A atmg A (ce > 0)

by Qo.

2. & [Oatly A atmg A (ce > 0)] D Ofce > 0)
: by 158C applied at g where ¢ is ce 2> 0, x is atéy, ¢ is ce > 0.
; 3. B [Oatly A atmg] D O(ce > 0) ;
is a conclusion of 1 and 2. \

This corresponds Lo case a above.

We have

4. & [Oatty A atmg 5] O COatmg
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by the SP rule applied to the path mg — m3 —- my — mg — mg.
5. & [Oatéy A atmz. 5] 3 Ofce > 0)

is a conclusion of 4 and 3.
This covers casc b above.

We have
6. B [atl, A atmy] D (s=1)
by Q1.
7. & [Oatéy A Oatmy] D> O(s=1)
is a temporal consequence of 6.
8. £ [Oaté; A atm] D SOatmg
by the SEM rule at m, where x is at{,.
9. E [Oaté; A atmy] D Ofce > 0)

is a conclusion of 8 and 5.

This covers case c.

We have

10. & [Datl; A atmg] D [(cf > 0) V (ce > 0))
by Qa.

11. & O(atéy Aatmg Afcf > 0)) O Ofef > 0)
is a trivial temporal tautology.

12, E [Oate, A atﬁo Aef>0)] > Oatm,
by the SEM rule at mg, where ¢ is cf > 0, x is atl;.

13. & [Qatl; A atmg A (c¢f > 0)] D Ofce > 0)
is a conclusion of 12 and 9.

14. & [Oaty, A atmg] O Ofce > 0)

by a disjunction of 10 and 13.

This corresponds Lo case d.

10
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We have
15. m [Qatly A atmyg] O Oatmg
by the SI® rule applicd to the path £; — 3 — £.
16. ® [Qatéy A atmgg] D Ofce > 0)
by 15 and 14.

N This covers case e.

By taking the disjunction of 3, 5, 9, 14 and 16 we obtain
g : 17. ® Oatly O Ofce > 0).
By applying the SEM rule at £; we obtain

18. £ atéy D Catly. §

Lemma B: B atly O Oatly

Proof of Lemma B:

Here again we will apply the SEEM rule, this time at £3. The needed premise for its application
is:

E Oatly > Os > 0).

By inspecting the current location of P, we distinguish three cases:
case a: P, is al mng. L will cventually advance to g and turn s positive.

case b: [, is somewhere in {mgy, m3, mq}. It will eventually get to ms and then by case a will
turn s positive.

case c: I’ is somewhere in {mg, m(, mg, my,mg}. By @, since P is at ¢,, s is currently cqual
to 1.

Thus the morc formal proof is given by:

1. = [Datlg A a_tm,r,] D [Dallg A atmg A (s > 0)]

by Qo.

2. » [Qatly A atms A (8 2>0)] D O(s > 0)
by ESC applied al ms where ¢pis 8 2> 0, x is atly, Y iss > 0

3. » [Datt; A atms] O O(s > 0)
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is a conclusion of 1 and 2.

This covers case a.

’ We have %
| 4. & [Oatly A atmz. 4] D O(atms) i
' by the SP. rule applied tq the path mg — m3 — my — ms. b
. 5. k [Oatl2 A atmz,_4j D> O(s>0)
by 4 and 3. 1
; This covers case b. ‘ i
. We have |!
- 6. E [DatlsA ~atmas] D (s=1) )
2 3
by Qi- f
‘- 7. & [Qatly A ~atmgy. 5] O Os > 0) 3
by 6. ’ }:
This covers case c. ’ ‘
v By takihg the disjunction of 3, 5, and 7 we obtain .
i :
: 8. k Oatly > O(s > 0). |
. Applying the SEM rule at £, yields
9. & atly DO Oatly,
i which is the desired Lemma 3. B .
IEXAMPLE: BINOMIAL COEFFICIENT !
|
We will now establish the termination of the program BC; for the distributed evaluation ‘
| of a binomial cocllicient, Since we have already proved the partial correctness of this program, ]
termination will guarantee total correctness. ‘
The statement, to be proved is: L
Theorem: B Ofatl, A atm,)
l 1 The initial condition associated wit.h the proper computation of the program is *
atly Aatmg A 1 =n) A (r2=0) A (y3=1) A (pa=1) A (0< k< n).
’ 42
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We will use in our proof the following invariants that were established above:

b O(QoAQiAQ), - :

where
, Qo is atlg 4+atmye+ys = 1
| Qi is (n—k) <1 <n) A(0<y2< k)
Q: is atl. O (y1 =n—k).
F
i li '
A ! We start by proving a sequence of lemmas:
¢ A ‘
W Lemma Al: E [atfy A (s =u)] D Olatly Ay = u)) ‘
‘ ' This lemma ensures that we never get stuck at ¢; which is a semagphore instruction. ‘\
. ‘ Proof of Lemma Al: !
f, The proof distinguishes three cases according to Lhe current location of F;. In all cases we .
A assume that P is waiting at ¢,.
e i

case a: Py is at mg. The next time it will be scheduled will increment y4, making it positive.
case b: P is in {m4,ms5}. Lventually it will get to mg and increment y4.

case c: P, is in {mg, m,ma, m3,m7, m.}. By Qg and the fact that P, is at ¢, y4 is currently
positive.

In all three cases we can show that the value of y; never changes.

Thus we have:
1. & [Datéy A atmg] D [Datly A atme A (y4 > 0)]
. by Qo.
2. & [Datly A atmg A (34 2 0)] 3 Oy > 0)

by the 18SC rule at mg where ¢ is y4 > 0, X is atl,.

e o ——— e -

3. kB [Oatf, A atmg] DO Oya > 0)

by 2 and 1.

This covers case a.

‘ We have |

4. ® [Oatty A atmys] DO Oatmg _
: i3 1
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by the SP rule applicd to the path my — ms — mg.

5. & [Oaté; A atmygs] DO Oya > 0)

; by 4 and 3.
‘ v This covers case b.
L,
i We have
6. £ [Oatty A ~atmag] D (y4 > 0)
- by Qo. Therefore
" ! 7. & [Oatty A ~atmag] O Oy > 0)
$
j»: This covers case c.
‘ By taking the disjunction of 3, 5 and 7 we obtain
’ 8. B DOat?y D 0(y4>0).
1 ' Applying the SIEM rule at €, where ¢ is y; = u we obtain
9. E [atl) A(yr=1u)] DO Olatly A (g1 =1u). 1 " ¥
= Lemma A2: & {(atly s Ay =u+1)] V [atlg Ay =u)]} D Olatly Ayr = u)]
i
This lemma cnsuces Lthat being anywhere in £; to €5 we return to £y with the value of y,
smaller by 1 than the original and being at €g we return to €y with the value of ¥, unchanged.
Proof of Lemma A2:
Alter being ensured by Lemma Al ol not being blocked at £ all that remains is to trace the
value of y;. Indeed:
li
{ 1. & [atby A{pi=u+1)] 2 Olatlo Alyy =u+ 1))
! by Lemma Al.
|
! 2. B {[atlasA(pi=u+1]V [atlgA(yy =u)]} D Ofatly Ayr = u)]
; by applying the SI’ rule to the path €y — €3 — €5 — &g — €y where @3 = @3 = ¢4 = @5 s
‘ = (u+1), dgisy; =u, and ¢ is atly A (y1 = u).
t
. 3. B [atly A (i =u+1)] DO Ofatly Ay = u)] .
j by 1 and 2.
4. & {latliy s A(yi=u+1)] V [atlg A(yy =u)]} D Olatly A(y1 = u)|
14




by 2 and 3.
This establishes Lemma A2. @
Lemma A3: B [atly A (m 2 n—k)] O Olatl, Alyy =n —k)).
This lemma establishes the termination of P, if started at £y with y; > n —&.
Proof of Lemma A3:
Define the auxiliary assertion:
Ey(u): latly A (y1 =1u)] D Olatl. Ay = n— k).
We will establish the lemma by shov»;'mg that
E (u>n—k) O E(u)
This will be established by induction on v > n — k. We will have to show first
(@) B Ei(n-k)
and then
(6) ® [(u>n—k) A Ei(u)] > Ei(u+1)

(a) To prove part a we observe that f5{(n — k) just says that il we are at £y with y; = n — k we
will eventually get to £, with y; = n — k. This is obvious since when yy = n—k, P procecds
directly from £g to ¢,.. Indced:

1. & [atéh A (y1=n—k)] > Olatl. Alyy =n —k)

by the ESC rule applied at £y where ¢ is ¥y, = n — k considering just the exit &g — ¢, whose
enabling condition ¢ is ¥y = n — k. In dther words,

1. ® E(n—k)
(b) To prove part b we assume that u > n — k and E)(u) is true and consider an execution that
starts at £y wilh yy = u + 1. Since v + 1 > n — k we will proceed to ¢, with y, = u + 1. By

Lemma A2 we will return to €y with y; = u. Now by the assumption of i) we will eventually
get to £, with yy = n — k.

For the formal proof, we assume:
2. B u2> n; k
and
3. & By(u),
f.e.,

3. B [atly A (1 =1u) D Olatle A = n—k)|.
45
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Then

4. k& Jatly A (ypr=u+1)] D [atlyg A (s =u+1) A 4(yl > -k
by 2.

5. ® [atlg A{lyjs=u+1) A(nn>n—k)] D Olatly Ay, =u+ 1))
by the ESC rule at &y using only the fg — £ exit where ¢ is y; > n— k.

6. & [atly A(yy=u+1)] D Olatty A{ys =u+1)

by 4 and 5.

7. & [atfy A (yu=u+1)] DO Olatéy Ay = u)]

by 8 and Lemma A2

8. k latty A (yy =u+1)] D Olatl. Ay = n— k)|
by 7 and ¥'; i.e., by the delinition of Ky,

8. B Fki(u+l).
Applying the deduction theorem to 2, 3, and 8', we obtain

9. B (u>n—k) D> [K(u) 2 Ei(u+1)].

Now we may combine parts @ and § (i.e., 1’ and 9) to deduce the lemma using the induction

principle. §

Lemma A4: B Olatl. A(y1 = n — k)]
This states that no matter where we are in a properly initialized execution of the program,
we will eventually wind up al £, with y; = n — k.

Proof of Lcmmq A4

There are three cases to be considered aceording to the current location of Py,

case a: P is already at £,.. Then we have by Qo that y, = n — k.

case b: Py is at €. Then we are assured by @) that y; > n—~k; henee, by Lemma A3, we will
wind up at &, with y = (n — k).

case c: I’y is anywhere clse, that is in {£y, ...,¢}. Then we wiil eventually get to ¢y by
Lemma A2, which is already covercd by case b.

We proceed with the formal proof. We have R

1. ® atl, D [atl, A (y1 =n—k)
' 16
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by Q3.

This corresponds to case a.

We have
2. ® atly DO [atly A (y1 2 n—k)]
by Q1.
3. ® atly DO Olatl. A{yy =n—k))

by Lemma A3.
This covers case b.

We have
4. m atly ¢ D Qatdy
by Lemma A2.
5. & atl;. g D Olatl. A(y1 =n—k))

by 4 and 3.
This covers case c.

Taking the disjunction of 1, 3 and 5 we obtain
6. m Olatl Alyy =n—k)

which cstablishes the lemma. 1

We now Lturn to the termination of Fs.

Lemma 30: ® [atmg A (y2 =1u)] D Olatms Ay = u)]

This lemma stales that we can never get blocked at ma.

Proof of Lemma 130:

By Lemma A4 we are guaranteed that 17, will eventually get to €, with y; = n — k. In the
worst case, by the time P, gets Lo €., Fh is sLill waiting at my. But then by @y, yo < k and
y1 = n — k so thal y; + y2 < n which enables the exit condition and leaves it enabled until 1%
moves. This proof should not be considered as saying that /% will indeed wait at my until 1
terminates, but this approach provides the easiest prool.

Procceding with more formal proof we have

1. & [atmg A (y2 =1u)] > {Olatmg A(y2 = u)] V Olatmy A(y: = u)j}

17
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by the ALT rule at mn, where ¢ is yo = u.
2. & OfatmyA(yz =1u)] O Olatma A(ys =u)Aatl. Alyy =n—k)) .
by Lemma A4.

. 3. E [atmy A (y2=1u) A atl, A (s =n—k])
. D |atmy A (y2 =u) A atle A (31 +y2 < n

using y2 < k given by Q.
i 4. & Jatmy A (y2=1u) A atl, A (yy +y2 < n)] O Olatmy A (y2 = u))
4 by ESC at my considering only the exit m, — my where ¢ is (y2 = u) A atl, A (y) + y2 < n).

5. & Oatmy A(y2 =u)] D Olatmy A (y2 = u)

by 2, 3, and 4.

4 +

!f 6. & [atmy A (y2=1u)] D Olatmy A(y: = u))

b !

X by 1 and 5. B 1

;' |
, Lemma Bl: E [atmg A (y2 =1u)] D Olatmy A(y: = u)]

‘ This lemma states that P2 does nol get blocked at my but eventually proceeds to m, with an ' ‘
ol unchanged value of ys. M
; It is analogous Lo Lemma Al and has a very similar proof. In that proof we distinguish three 3
) cases according to the location of 7, _'l'hey are: 1 at €4, P2 in {€;, €3}, and P’ clsewhere. Their il
. analysis is identical to that of Lemma Al. !

: | t
i Lemma B2: E {[atm A (ya=1u)] V [atme s A(yz=u+1)]} 2 Olatmg Ay =u+1) 5
1 This lemma states that if we are anywhere in my to mq we will eventually return to mg with $
§ y2 properly adjusted. : !
{ 4
P proof of Lemma 132:
‘ i
, 1. B [atmy g A (yz=u+1)] D OlatmgA(yz =u+1)] i
LA ’ v
& f by the SP rule applied to the path my — ms — mg — m7 — mg where @4 = ¢ = ¢ = @7 is f
! ye=u+land Y isatmoA(yz=u+1). :
t
2. E [atmy A (y2=u+1)] D OlatmyA(yz=u+ 1)
by Lemma 1 and 1.
3. B [atmy A(ga=u+1)] O OlatmoA(ya=1u+1))

18 ;
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by Lemma 30 and 2.
4. R [étml A(ya=1u)] O OlatmzA(y2 =u+1))

by the ESC rulc at m; where ¢ isya = u and ¢ is atma A (y2 = u + 1).
5. & [atmy A (y2=1u)] DO OlatmoA(y: =u+1)]

by 4 and 3.

By taking the disjunction of 1, 2, 3 and 5 we obtain:

6. & {[atmyA(ya=1u)] V [atme s A(y2=u+1)]} D OfatmpA(y: = u+ 1))

Lemma B3: & [atmg A (y2 < k)] D Qlatm. A (y = k)|
This lemma cstablishes the termination of /% i-f started al mg with yo < k.
Proof of Lemma B3:
Similarly to the proof of l.emma A3 we define the auxiliary asscrtion
Ea(u): [atmg A (y2 =1u)] D Olatm.A(y2 = k).
The lemma is cstablished by showing that
B (u < k) D Fyu)
Analogously to A3 this is proven by descending induction on u < k. We show the two clauscs:
(@) B ExfB)
and
(6) B [(u<k) A Ex(u+1)] D Eg(u).

Part a is proved by observing the direct path from mg to m, in the case that 3o = k. Part b is
proved by tracing the execution from mng with yo = u < k to m; with yo = v + 1 and use the
induction hypothesis to finally guarantee atm, A (y2 = k).

The details of the formal proof are very similar to those of A3. @

Lemma B4: B O atm,

This statement says that regardless of where we are in a properly initialized exccution of the
program, we cventually wind up at m,.

Proof of Lemma I34:

Similarly to the proof of Lemma A4 there are three cases to be considered:

19
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case a: I’ already at m,.

case b: % currently at mg. Then we have by @, that y2 < k and hence by Lemma B3 we
will eventually reach m,.

case c: I’ is elsewhere. Then we will eventually get to mo by Lemma 2.

The formal details are similar to thosc of lL.emma A4. §

Proof of Theorem:

To conclude the prool of the thecorem we obsecrve that:
1. & ¢, D Oaté,
by the ALT rule since £, has no exits.
2. & ODQate,
by Lemma A4 and 1. Similarly,
3. E OQOatm,

using Lemma B4 and the ALT rule at m,.

A temporal consequence of 2 and 3 is

E O[atle/\atmcl-. ]
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